代业明
男,河南信阳人,教授,系统科学博士,管理科学与工程博士后,博士研究生导师。从事博弈论及其应用研究工作多年,现为中国运筹学会博弈论专业委员会常务理事、副秘书长,教育部学位论文评估专家以及《系统工程理论与实践》、《管理评论》、《中国管理科学》、《运筹与管理》、《中国电机工程学报》、《Applied Energy》、《Energy》、《Renewable Energy》、《Information Sciences》、《Expert Systems and Applications》、《Applied Soft Computing》、《Technological Forecasting & Social Change》《Computers & Industrial Engineering》等20多家国内外重要期刊审稿人,近年来主要从事博弈论领域合作博弈、部分合作、非合作博弈理论及其在数字经济、能源经济与管理、供应链与运营管理等方向的应用研究,同时也从事运筹与经济分析及人工智能大数据预测研究,发表学术论文40多篇。
学术兼职和社会服务
中国运筹学会博弈论专业委员会第四届理事会常务理事、副秘书长(2021-2025)教育部学位论文评估专家
中国优选法统筹法与经济数学研究会高级会员
研究方向
博弈论及其应用、数字经济、拍卖与机制设计、能源经济与管理、供应链与运营管理、人工智能与大数据分析预测
主要任教课程
本科 《博弈论与信息经济学》、《系统工程》
研究生 《经济博弈论》
教学、科研、竞赛奖励荣誉称号
19. 2024中国知网高被引学者TOP 1%
18. 2024年度《复杂性科学与复杂系统》优秀评审专家
17. 2022-2023《中国管理科学》优秀评审专家
16. 2024年第十四届MathorCup数学应用挑战赛二等奖指导老师
15. 2024年度青岛大学优秀硕士研究生论文指导老师
14. 2024年度青岛大学优秀本科毕业论文指导老师
13. 2023青岛市第37届人文社会科学成果奖二等奖
12. 2023年度青岛大学优秀硕士研究生论文指导老师、优秀导师
11. 2023年度青岛大学优秀本科毕业论文指导老师
10. 2022年度青岛大学优秀硕士研究生论文指导老师
9. 2022年度青岛大学优秀本科毕业论文指导老师
8. 2022年度获聘教育部研究生学位论文评估专家
7. 2022年度中国卓越期刊《电网技术》高影响力论文
6. 2020-2021《中国管理科学》优秀评审专家
5. 2021年度青岛大学优秀本科毕业论文指导老师
4. 2020年度青岛大学优秀本科毕业论文指导老师
3. 2020年度美国大学生数学建模竞赛M奖(一等)、H奖(二等)指导老师
2. 2019年度《管理工程学报》优秀评审专家
1. 2018年山东省高等学校优秀科研成果奖人文社科类三等奖
科研项目
5. 数据驱动用户行为的电力市场定价机制博弈研究, 国家自然科学基金面上项目(批准号: 72371139), 主持
4. 综合分布式能源的新型电力市场动态定价机制博弈研究, 山东省自然科学基金面上项目(批准号: ZR2022MG002), 主持
3. "新电改"背景下售电侧放开的电力市场动态定价机制研究, 教育部人文社会科学规划项目(批准号: 20YJA630009), 主持
2. 数字经济背景下基于人工智能的新型智慧城市能源效率预测, 山东省人文社科规划项目(批准号: 20CSDJ15), 主持
1. 基于博弈方法的智能电网实时定价机制研究, 中国博士后科学基金资助项目, 主持
主要代表性论文
[38] 代业明, 于双. 碳税监管下考虑零售商双重行为偏好的再制造闭环供应链决策[J/OL]. 中国管理科学:1-20. https://doi.org/10.16381/j.cnki.issn1003-207x.2022.1639. (CSSCI)
[37] 代业明, 高亚丽, 尹慧, 冯雪. 综合需求响应下考虑售电商补贴的电力市场实时定价决策[J/OL]. 中国管理科学: 1-21. https://doi.org/10.16381/j.cnki.issn1003-207x.2022.2441. (CSSCI) [36] 代业明, 李永恒, 齐尧. 基于用户行为和需求调峰的电力市场交易机制研究[J]. 系统工程理论与实践, 2024, 2024, 44(11): 3586-3597.(EI, CSSCI, 卓越期刊)
[35] Yeming Dai, Weijie Yu. Short-term power load forecasting based on Seq2Seq model integrating Bayesian optimization, temporal convolutional network and attention [J]. Applied Soft Computing, 2024, 166: 112248. (中科院SCI一区)
[34] Lina Dong, Yeming Dai*. Research on alliance decision of dual-channel remanufacturing supply chain considering bidirectional free-riding and cost-sharing[J]. Computer Modeling in Engineering & Sciences 2024, 140(3), 2913-2956. (中科院SCI四区)
[33] 代业明, 孙锡连, 齐尧, 段金鹏. 考虑双重不确定和用户负效用的多目标二层售电商决策[J]. 中国管理科学, 2024, 32(7): 163-171. (CSSCI)
[32] Yeming Dai, Weijie Yu, Mingming Leng. A hybrid ensemble optimized BiGRU method for short-term photovoltaic generation forecasting[J]. Energy, 2024, 299: 131458. (中科院SCI一区)
[31] Yeming Dai, Xinyu Yang, Mingming Leng. Optimized Seq2Seq model based on multiple methods for short-term power load forecasting[J]. Applied Soft Computing, 2023, 142: 110335. (中科院SCI一区)
[30] 代业明, 齐尧, 孙锡连. 基于预测惩罚和联盟嫉妒的分布式能源合作博弈模型[J]. 管理工程学报, 2023, 37(2): 174-182. (CSSCI)
[29] Yeming Dai, Qiong Zhou, Mingming Leng, Xinyu Yang, Yanxin Wang. Improving the Bi-LSTM model with XGBoost and Attention Mechanism: A combined approach for short-term power load prediction[J]. Applied Soft Computing, 2022, 130: 109632. (中科院SCI二区)
[28] Yeming Dai, Yuqing Yang, Mingming Leng. A Novel alternative energy trading mechanism for different users considering value-added service and price competition[J]. Computers & Industrial Engineering, 2022, 172, Part A: 108531. (中科院SCI二区)
[27] Yeming Dai, Xinyu Yang, Mingming Leng. Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence [J]. Technological Forecasting & Social Change, 2022, 182: 121858. (SSCI一区, ABS三星)
[26] Yeming Dai, Yanxin Wang, Mingming Leng, Xinyu Yang, Qiong Zhou. LOWESS smoothing and Random Forest based GRU model: A short-term Photovoltaic power generation forecasting method[J]. Energy, 2022, 256: 124661. (中科院SCI一区)
[25] 代业明, 周琼. 基于改进Bi-LSTM和XGBoost的电力负荷组合预测方法[J]. 上海理工大学学报, 2022, 44(2): 138-147. (北大核心)
[24] 段金鹏, 代业明,* 齐尧, 赵佩. 基于用户可再生能源偏好的电力市场需求响应模型[J]. 工业工程, 2022, 25(2): 146-154. (北大核心)
[23] 代业明, 齐尧, 高红伟, 李陆. 基于PMSC管理及奖惩机制的智能电网实时定价研究[J]. 中国管理科学, 2022, 30(7): 28-38. (CSSCI)
[22] 代业明, 孙锡连, 李陆, 高红伟. 基于多层博弈的智能电网住宅电力实时需求响应机制[J]. 运筹与管理, 2021, 30(10): 11-17. (CSSCI扩展、北大核心)
[21] Yeming Dai, Yao Qi, Lu Li, Hongwei Gao. A Real-time pricing scheme with advertisement competition based on multi-leader-multi-follower game in smart community [J]. Asia-Pacific Journal of Operational Research, 2021, 38(5): 2140023. (中科院SCI四区)
[20] Yeming Dai, Xilian Sun, Yao Qi, Mingming Leng. A real-time, personalized consumption-based pricing scheme for the consumptions of traditional and renewable energies [J]. Renewable Energy, 2021, 180: 452-466. (中科院SCI一区)
[19] Yeming Dai, Yao Qi, Lu Li, Baohui Wang, Hongwei Gao. A dynamic pricing scheme for electric vehicle in photovoltaic charging station based on Stackelberg game considering user satisfaction [J]. Computers & Industrial Engineering, 2021, 154: 107117. (中科院SCI二区)
[18] Yeming Dai, Pei Zhao. A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization[J]. Applied Energy, 2020, 279: 115332. (中科院SCI一区)
[17] 代业明, 高红伟, 王宝慧, 李陆. 基于系统工程方法论的分布式发电系统动态定价决策[J]. 管理评论, 2020, 32(7): 205-216. (CSSCI)
[16] 赵佩, 代业明*. 基于实时电价和加权灰色关联投影的SVM电力负荷预测[J]. 电网技术, 2020, 44(4): 1325-1332. (EI, CSCD, 卓越期刊)
[15] Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu, Lu Li. A real-time pricing scheme considering load uncertainty and price competition in smart grid market [J]. Journal of Industrial and Management Optimization, 2020, 16(2): 777-793. (中科院SCI四区)
[14] Yeming Dai, Lu Li, Pei Zhao, Jinpeng Duan. Real-time pricing in smart community with constraint from the perspective of advertising game[J]. International Transactions on Electrical Energy Systems, 2019: e12043. (中科院SCI四区)
[13] 李陆, 代业明*. 广告视角下智能小区实时定价博弈分析研究[J]. 工业工程, 2019, 22(3): 77-85. (北大核心)
[12] Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu. A demand response approach considering retailer incentive mechanism based on Stackelberg game in smart grid with multi-retailers[J]. International Transactions on Electrical Energy Systems, 2018, e2590. (中科院SCI四区)
[11] 代业明, 高红伟, 高岩, 袁光辉. 具有电力需求预测更新的智能电网实时定价机制[J]. 电力系统自动化, 2018, 42(12): 58-63. (EI, CSCD, 卓越期刊)
[10] Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu. Real-time pricing scheme based on Stackelberg game in smart grid with multiple power retailers[J]. Neurocomputing, 2017, 260: 149-156. (中科院SCI二区)
[9] 代业明, 高红伟, 高岩. 考虑信息延迟的智能电网实时定价和算法[J]. 工业工程与管理, 2017, 22(2): 96-102. (CSSCI)
[8] 代业明, 高岩, 朱红波, 金锋, 袁光辉. 考虑消费者激励因素的智能电网多零售商多用户实时定价策略[J]. 工业工程, 2017, 20(1): 12-20. (北大核心)
[7] 代业明, 高岩, 高红伟, 金锋. 基于需求响应的智能电网实时定价谈判模型[J]. 中国管理科学, 2017, 25(3): 74-80. (CSSCI)
[6] 代业明, 高岩. 分布式发电系统动态定价决策[J]. 系统工程, 2016, 33(2): 70-75. (CSSCI)
[5] 代业明, 高岩. 具有多类资源多类用户智能电网实时定价决策[J]. 系统工程理论实践, 2015, 35(9): 2315-2323. (EI, CSSCI, 卓越期刊)
[4] 代业明, 高岩. 基于智能电网需求侧管理多零售商实时定价策略[J]. 中国电机工程学报, 2014, 34(25): 4244-4249. (EI, CSCD, 卓越期刊)
[3] Yeming Dai, Yan Gao. Real-time pricing decision based on leader-follower game in smart Grid[J]. Journal of systems science and information, 2015, 3(4): 348-356. (CSCD)
[2] 代业明, 高岩, 高红伟. 具有风险因素的多联盟部分合作对策[J]. 应用数学学报, 2016, 39(6): 878-889. (CSCD)
[1] 代业明, 高红伟, 徐蜜等. 双矩阵对策协同均衡的主对角占优准则及其算法[J]. 系统工程理论与实践, 2013, 33(6): 1523-1529.(EI, CSSCI, 卓越期刊)
指导学生
本科生
l 指导本科生多次获得青岛大学本科生优秀毕业论文并发表SCI和CSSCI期刊论文
l 指导的本科生毕业后前往南京大学、山东大学、北京理工大学、深圳大学、上海大学等高校继续深造
l 对有意从事学术研究的优秀本科生进行科学的方向选择和系统的学术指导,为以后的学术生涯打好基础
研究生
l 指导的硕士研究生在国内外知名期刊发表多篇论文并获优秀学位论文
l 对研究生系统地进行学术培训,提供学术经验和规范性指导
联系方式
E-mail:yemingdai@163.com
招收管理科学与工程学术学位博士研究生,管理科学与工程专业学术硕士和物流管理专业硕士及MBA、MEM研究生,欢迎数学、统计、计算机、经济和管理科学等专业同学报考硕士、博士研究生!优先考虑数学、运筹学、计算机基础较好同学,希望真正热爱学术、愿意从事人工智能和博弈运筹优化在经管领域应用的同学联系!
Yeming Dai
Professor and Vice Dean of Department of Management Science and Engineering
School of Business, Qingdao University
Shouzheng Building, No. 62 Keda Branch Road,
Laoshan District, Qingdao, China 200071
E-mail: yemingdai@163.com
RESEARCH FIELDS
Game Theory and Application; Power Market; Operation Management and Supply Chain; Machine Learning and Forecasting
TEACHING AREAS
l Master's courses: Game Theory
l Undergraduate courses: System Engineering; Game Theory and Information Economics
VISITING APPOINTMENTS
l Research Fellow (Coprofessor: Professor Mingming Leng), Faculty of Business, Lingnan University, 2024.07-2024.08
l Visiting Scholar (Advisor: Professor Mingming Leng), Faculty of Business, Lingnan University, 2021.03-2022.02
l Visiting Scholar (Advisor: Professor Guihua Lin), School of Management, Shanghai University, 2015.09-2016.08
JOURNAL PUBLICATIONS (in English)
[15] Yeming Dai, Weijie Yu. Short-term power load forecasting based on Seq2Seq model integrating Bayesian optimization, temporal convolutional network and attention [J]. Applied Soft Computing, 2024, 166: 112248. (SCI Q1)
[14] Yeming Dai, Weijie Yu, Mingming Leng. A hybrid ensemble optimized BiGRU method for short-term photovoltaic generation forecasting[J]. Energy, 2024, 299: 131458. (SCI Q1)
[13] Yeming Dai, Xinyu Yang, Mingming Leng. Optimized Seq2Seq model based on multiple methods for short-term power load forecasting[J]. Applied Soft Computing, 2023, 142: 110335. (SCI Q1)
[12] Yeming Dai, Qiong Zhou, Mingming Leng, Xinyu Yang, Yanxin Wang. Improving the Bi-LSTM model with XGBoost and Attention mechanism: A combined approach for short-term power load prediction[J]. Applied Soft Computing, 2022, 130: 109632. (SCI Q1)
[11] Yeming Dai, Yuqing Yang, Mingming Leng. A Novel alternative energy trading mechanism for different users considering value-added service and price competition[J]. Computers & Industrial Engineering, 2022, 172, Part A: 108531. (SCI Q1)
[10] Yeming Dai, Xinyu Yang, Mingming Leng. Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence [J]. Technological Forecasting & Social Change, 2022, 182: 121858. (SSCI Q1)
[9] Yeming Dai, Yanxin Wang, Mingming Leng, Xinyu Yang, Qiong Zhou. LOWESS smoothing and Random Forest based GRU model: A short-term Photovoltaic power generation forecasting method[J]. Energy, 2022, 256: 124661. (SCI Q1)
[8] Yeming Dai, Xilian Sun, Yao Qi, Mingming Leng. A real-time, personalized consumption-based pricing scheme for the consumptions of traditional and renewable energies [J]. Renewable Energy, 2021, 180: 452-466. (SCI Q1)
[7] Yeming Dai, Yao Qi, Lu Li, Hongwei Gao. A Real-time pricing scheme with advertisement competition based on multi-leader-multi-follower game in smart community [J]. Asia-Pacific Journal of Operational Research, 2021, 38(5): 2140023. (SCI Q3)
[6] Yeming Dai, Yao Qi, Lu Li, Baohui Wang, Hongwei Gao. A dynamic pricing scheme for electric vehicle in photovoltaic charging station based on Stackelberg game considering user satisfaction [J]. Computers & Industrial Engineering, 2021, 154: 107117. (SCI Q1)
[5] Yeming Dai, Pei Zhao. A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization[J]. Applied Energy, 2020, 279: 115332. (SCI Q1)
[4] Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu, Lu Li. A real-time pricing scheme considering load uncertainty and price competition in smart grid market [J]. Journal of Industrial and Management Optimization, 2020, 16(2): 777-793. (SCI Q3)
[3] Yeming Dai, Lu Li, Pei Zhao, Jinpeng Duan. Real-time pricing in smart community with constraint from the perspective of advertising game[J]. International Transactions on Electrical Energy Systems, 2019: e12043. (SCI Q3)
[2] Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu. A demand response approach considering retailer incentive mechanism based on Stackelberg game in smart grid with multi-retailers[J]. International Transactions on Electrical Energy Systems, 2018, e2590. ((SCI Q3)
[1] Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu. Real-time pricing scheme based on Stackelberg game in smart grid with multiple power retailers[J]. Neurocomputing, 2017, 260: 149-156. (SCI Q1)